
Top 10
Most Common
Java Performance
Problems

http://www.appdynamics.com/

Top Ten Most Common Java Performance Problems 2

Steven Haines is a technical architect at Kit Digital, working onsite at Disney in both an advisory role to the performance of Disney’s largest software endeavor to date as well as
managing the development, quality assurance, and business analysis teams responsible for the ticketing and yet undisclosed systems. He has written three books: Java 2 From Scratch,
Java 2 Primer Plus, and Pro Java EE Performance Management and Optimization, and has spent the better part of the past 14 years in the Application Performance Management (APM)
space at both Quest Software and AppDynamics. Additionally he taught Java at both Learning Tree University and the University of California Irvine. You can find him teaching technical
subjects on his website: www.geekcap.com. When not engrossed in performance tuning and enterprise architecture he spends his time with his two children: Michael (12) and Rebecca
(3), and his wife Linda, frequenting amusement parks in Orlando, FL.

Top 10 Most Common Java Performance Problems

Table of Contents

Introduction ... 3
Database ... 4

1. Death by 1,000 Cuts: The Database N+1 Problem .. 5
2. Credit and Debit Only, No Cache: The Importance of Caching ... 7
3. Does anyone have a connection I can borrow? Database Connection Pools .. 9

Memory ... 11
4. “I’ll stop the world … and melt with you”: STW Garbage Collections .. 12
5. Where’s My Memory? Memory Leaks ... 14

Concurrency .. 17
6. Hot Fudge Sundae Standoff: Thread deadlocks ... 18
7. Accident Ahead, Merge Right: Thread Gridlocks .. 19
8. Please hold, your call will be answered in the order received: Thread Pool Configurationridlocks 21

DEFCON 1 .. 23
9. We don’t need no stinking performance: Performance as an afterthought ... 24
10. Monitoring on the Super-Cheap: Having your users tell you about performance problems 25

Conclusion ... 28

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 3

My career in performance began, as you might guess, with
a catastrophe. I was working as an architect at a marketing
company that runs surveys, and one of our promotions took off.
It was featured on the AOL homepage, and thousands of people
began visiting our website. What started as a great success
quickly turned into a crisis as our application servers began to
fall over under the unprecedented load.

Our application environment was actually pretty heavy-duty for the
time. We had a Cisco load balancer in front of four WebLogic
instances running on Solaris with an Oracle cluster behind them.
We were grossly underprepared, however, for the load we were
about to receive. As soon as the promotion appeared on the
AOL homepage I watched our session counts start climbing from
10 to 50, 500, and 5,000, at which point things started heading
downhil l quickly. I was restarting the WebLogic instances as fast as
I could, l ike a terrible game of Whack-a-Mole. Eventually, however,
it got out of our hands – we had to ask AOL to remove our survey
from their homepage, because we simply couldn’t handle the traffic.

When this happened I had virtually no experience with performance
analysis, but I quickly realized how important performance was to
everyone in the business. Over the next 13 years I learned all I
could about Java performance and architecture so that I could
help my company and clients to get their apps up to speed. Over
those 13 years I saw my fair share of performance-related issues,
and I noticed a disturbing trend: Most performance issues in Java
can be attributed to a handful of root causes. Sure, occasionally
I saw some bizarre corner cases that came out of the blue and

wreaked havoc in an app, but for the most part performance issues
in Java are all pretty cookie cutter. In this eBook, I’ l l talk about
some of the most common problems I’ve encountered during my
time as a performance analyst, along with how to recognize and
address these issues to minimize their impact and prevent them
from occurring in your application. I’ve sorted the most common
issues into three main categories:

•	 Database	 Problems:	 Most	 applications	 of	 scale	 wil l	
eventually be backed by some form of relational or non-
relational database, so for the purposes of this eBook I
focus on three common relational database problems:
persistence configuration (lazy vs. eager loading),
caching, and database connection pool configuration.

•	 Memory	 Problems:	 Java	 memory	 management	 is	
challenging and can lead to all kinds of performance
issues. I focus on what I have observed to be the two
most common memory issues: garbage collection
configuration and memory leaks.

•	 Concurrency	Problems:	As	the	complexity	of	applications	
increases we find ourselves writing code that performs
more actions concurrently. In this section I focus on three
common concurrency issues: thread deadlocks, thread
gridlocks, and thread pool configuration issues.

 -Steven Haines

Introduction

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 4

Database

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 5

Database
The backbone of any modern web application is its data. Back
in 1995, when businesses first began building web applications
to house their marketing content, the database wasn’t such a
necessary feature of most web apps – the content was static
and there was virtually no user interaction. Today, however,
applications are much more complex and perform many more
functions than before. As a result, the database is critical to the
functionality and performance of the application.

It should come as no surprise that the database is, therefore,
the biggest source of performance issues for Java applications.
Problems can occur in many places: your application code may
access the database inefficiently, or the database connection

pool may be improperly sized, or the database itself may be
missing indices or otherwise in need of tuning. In this section
we’ll focus on three of the most common performance issues on
the application side of the equation (it’s probably best to leave
database tuning for another eBook):

N+1 problem)

a cache

1. Death by 1,000 Cuts: The Database N+1 Problem
Back in the J2EE days when we were building Entity Beans, and specifically Bean
Managed Persistence (BMP) Entity Beans, there was a problem that was referred
to as the “N+1” problem. Let’s say I wanted to retrieve the last 100 entries from
my Order table. To do this, I’d have to first execute a query to find the primary keys
of each item, such as:

 SELECT id FROM Order WHERE …

And then I’d execute one query for each record:

 SELECT * FROM Order WHERE id = ?

In other words, it would take me 101 queries to retrieve 100 records (N+1). We’d
call this problem “death by 1,000 cuts” because even though each individual
query was fast, I was executing so many of them that the cumulative response
time of the transaction was huge, and the database was subjected to enormous
overhead.

Persistence technologies have improved since then, but the “N+1” problem hasn’t
completely disappeared, and neither has “death by 1,000 cuts.” It’s important to
understand the implications of configuration options on both your database and
your persistence engine.

Problem
A common problem with Java applications that access a database is that they
sometimes access the database too often, resulting in long response times and
unacceptable overhead on the database. Most of the time this is not deliberate. The
above example describes the state of the database access a few years ago, but if
you’re not careful, this problem can reemerge in modern Hibernate and JPA code.

Hibernate and other JPA implementations provide fine-grained tuning of database
access. The most common option for database tuning is the choice between
eager and lazy fetching. Consider querying for a purchase order that contains 10
line items. If your application is configured to use lazy fetching, but the business
requirement calls for the application to show all 10 line items, then the application
will be required to execute an additional 10 database calls to load that purchase
order. If the application is configured to use eager fetching, however, depending on
the persistence technology, you may have one or two additional queries, but not 10.

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 6

When an application requests an object from the database, that object may reference
other objects. For example, a PurchaseOrder object may reference multiple LineItem
objects. Eager fetching means that when the PurchaseOrder object is requested, all
referenced LineItem objects will be retrieved from the database at that time. Lazy
fetching means that when the PurchaseOrder object is requested, the referenced
LineItems will not be retrieved from the database, but when a LineItem is accessed, it
will be loaded from the database. Eager fetching reduces the number of calls that are
made to the database, but those calls are more complex and slower to execute and
they load more data into memory. Lazy fetching increases the number of calls that are
made to the database, but each individual call is simple and fast and it reduces the
memory requirement to only those objects your application actually uses.

Database cont’d

So which strategy should you use? The answer, of course, depends on your use
case. If you have no intention of looking at the line items 99% of the time then lazy
fetching is the correct strategy because querying for a single line item is much faster
than all 10. But if 90% of the time you’re going to look at the line then eager fetching
is your friend, because a couple slower queries are better than a hundred fast ones.
The point is that you need to understand how your application will be used before you
configure your persistence engine.

Symptoms
The primary symptom of the N+1 problem is an increased load on, and therefore
a slower response time from, the database. The problem will be hard to detect
under low user load because the database will have plenty of processing power,
but as application load increases it will become more and more problematic. If
the application load and database load increase at the same rate then you are
probably making good use of your database, but if an increase in load on the
application results in a disproportionate increase in load on the database then
you might have an N+1 problem.

Impact

I only rate the impact of this problem as a 6 because, even though it’s fairly
common, you have an easy mitigation strategy: simply increase the capacity
of your database. It it’s not a long-term solution, but it’ll do the job. The good

6

news is that once you’ve diagnosed this problem, fixing it is usually pretty
straightforward. Just be careful when making changes to your persistence engine
configurations, because different use cases will have different consequences for
application performance.

Troubleshooting
After observing the symptoms of this problem, troubleshooting the root cause
can be challenging. In order to be able to effectively troubleshoot an N+1 problem
you need the following information:

it’s making

that are exhibiting the problem (you don’t want to fix a performance problem
just to learn that you just broke a business rule)

The business transaction and database counters can be used to confirm that you
have this problem, but the most important piece of information is the correlation
between business transactions and the database calls they make. One warning
to be aware of is that the nature of this problem is in the persistence logic, so
you may very well have multiple business transactions exhibiting this problem.
If you can correlate business transactions to persistence logic then you’ll be in a
very good place to properly remediate the problem.

Avoiding this problem
The best way to avoid this problem is to understand both your business domain
and the persistence technology you’re using. Making sure you’re solving the
correct business problem is up to you, but here’s some general advice about the
technology side of things:

of eager versus lazy loading, most persistence engines default to “lazy,” which
may or may not be appropriate for your application. If it isn’t, you may be
inflicting unnecessary load of your database.

is one example, but there are other options that can cause issues. To truly
be effective, you need to pair up the configuration options of your chosen
persistence technology with the business problem you’re trying to solve.

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 7

Database cont’d

2. Credit and Debit Only, No Cache:
The Importance of Caching

Years ago, Marc Fleury, the creator of JBoss, wrote a paper called “Why I Love
EJBs.” In it he argues that it’s faster to read data from an entity bean in memory
than it is to make a database call across a network. While I’m not as in love with
EJBs as Marc, I can’t deny that database calls can be very expensive from a
performance standpoint. This is why, in recent years, many organizations have
turned to caching to optimize the performance of their applications – it’s much
faster to read data from an in-memory cache than to make a database call across
a network.

Problems with Caching
1. No cache. It doesn’t take a degree in rocket science to understand that it’s faster
to serve content from memory than to make a network trip to a database that has to
execute a query to retrieve your data. Unless you have specific reasons not to cache,
you should be caching.

2. The cache is not configured properly. There are various levels and various
implementations of caching, from a level 2 cache that sits between your persistence
engine and your database to a stand-alone distributed cache that holds arbitrary
business objects. Your persistence technology, such as Hibernate, should have
support for a level 2 cache that behaves as follows: when a request for an object is
made, first check the cache to see if the object is already in memory; if it is and it
hasn’t expired, then return that cached object, otherwise make the database call, save
the object to the cache, and return the object to the caller. In this capacity, frequently
used objects will be resolved without requiring interaction with a database.

Caches are not the be-all end-all solution, but once you have decided to use a cache,
there are a few things you need to consider:

Caches hold stateful objects, unlike pools, which hold stateless objects. For
example, imagine a pool as the registers at a supermarket. When you’re ready to
check out, you go to whichever register is free – it doesn’t matter which one you
get. Caches, on the other hand, are like children at daycare. When you go to the
daycare to pick up your child, you don’t just pick up whichever child is available first –
you’re only interested in picking up your own child. Pools contain stateless objects,
meaning it doesn’t matter which connection you get – all connections are equal,
but caches contain stateful objects because you go to a cache looking for a specific
piece of data.

Because caches are stateful, you must configure them to a finite size so as not to
exhaust memory. When the cache is full, then the cache must respond based on its
configuration. For example, it might remove the least recently used object from the
cache to make room for the new object. This means that sometimes the requested
object may no longer be in the cache, resulting in a “miss.” A miss typically results in
a database call to find the requested object. The higher your miss ratio, therefore, the
less you’re taking advantage of the performance benefits of the cache. It’s important
to optimize your cache settings carefully, so that you maintain a good “hit ratio”
without exhausting all the memory in your JVM.

3. Distributed caching. If you have multiple servers in a tier all writing to their
own caches, how do they stay in sync? If you do not configure the caches to be
distributed, then they won’t. Depending on which server you hit, your results may
vary (which is usually a bad thing). Most modern caches support a distributed
paradigm so that when a cache is updated it will propagate its changes to other
members in the cache. But depending on the number of cached nodes and the
consistency of data you require, this can be expensive. Consistency refers to the
integrity of your data at a point in time: if one cache node has one value for an
object and another node has a different value then the two cache nodes are said
to be inconsistent. On the loose end of the spectrum, caches can be “eventually
consistent,” meaning that your application can tolerate short periods of time when
the caches on different nodes do not have the same values. For example, if you
post a new status on Facebook you’ll see it immediately, but your friends won’t
see it for a couple minutes. On the other end of the spectrum, you might require all
cache nodes to have the same value before that update is considered committed.
The performance challenge is to balance your distributed caching behavior with
your business rules: try to opt for the loosest distribution strategy that satisfies
your business requirements.

Stateful objects represent specific object instances, such as a specific PurchaseOrder
or a specific child. Stateless objects represent general objects, such as a Phillips head
screwdriver or a supermarket checker. When a stateful object is accessed it is important
to retrieve a specific object, but when a stateless object is accessed, any object of that type
will do.

Cache consistency, sometimes referred to as cache coherence, refers to the validity of data
across your entire cache. A cache is consistent if every instance of the same object in the
cache has the same value. In recent times, large-scale applications have adopted eventual
consistency, which means that there will be periods of time when different instances of the
same object will have different values, but eventually they will have the same value.

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 8

Database cont’d

Symptoms
The main symptom of an application that is not using a cache properly is increased
database load and slow response times as a result of that load. Unlike the “N+1”
performance problem, the relative database load increases in direct proportion
to your application load. If you’re using caching correctly, database load should
not increase in proportion to application load, because the majority of requests
should be hitting the cache. The negative impact of this problem is that as your
load increases, the database machine is subjected to more load, which increases
its CPU overhead and potentially disk I/O rate, which degrades the overall
performance of all business transactions that interact with the database.

Impact

I only rate a missing cache as a 7 because adding a cache is really a performance
enhancement, not a necessity. If you see increased load in your database and
degraded performance, one of the biggest enhancements you can make for
your application is adding a cache. It would be best to plan for a cache from
the beginning, but caches can be added after the fact with minimal code
rewrites. Depending on where you insert your cache and your cache provider’s
requirements, the code impact may vary, but it’s rarely significant.

Troubleshooting
Identifying the need for a cache is accomplished by examining the performance of
your database, its resource usage, and the amount of load that your application is
sending to the database. If you observe problems with your database’s resource
utilization then you should examine your business requirements and determine
whether or not a cache would be a good option.

Once you have determined that you need a cache, sizing the cache appropriately
is the next issue. A cache adds the most value if the cache can service the
majority of queries made to the cache, meaning that it contains the majority
of the most frequently accessed objects. If the cache is sized too small then a
significant number of queries will require a call to the backend data store because
the cache doesn’t contain the value. If the cache is sized too large then it could
consume an excessive amount of memory. Caches frequently publish metrics,
such as through JMX, about their performance. Two common metrics are the

7

cache hit count or hit ratio and the cache miss count or miss ratio. A cache hit
means that the cache serviced the request and a cache miss means that the
cache did not service the request. If you observe a high miss count then the
cache is sized too small.

Avoiding this problem
Plan, plan, plan! Whenever I develop an application, no matter how small, I always
err on the side of performance and scalability. This is not to say that you should
go to extraordinary lengths to overengineer your application. It just means that
before you begin, you should ask yourself the question: if I face performance
issues, is this an object that could be cached? If so, go ahead and build the object
in such a way that it can be easily added to a cache later, by doing things like
making the object serializable.

If you’re building an application of substance then I would recommend
implementing caching anywhere it seems appropriate. You’ll avoid many problems
further down the line for a relatively small investment.

Java defines the notion of serialization as follows: an object is serializable if it implements
the java.io.Serializable interface and it only contains primitive types, Strings, and other
serializable objects. Practically, serializable objects can be converted into a form that can
be transported to and from other servers or even to disk. Most caching solutions leverage
Java’s support for serialization to send objects from one machine to another.

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 9

Database cont’d

3. Does anyone have a connection I can borrow?
Database Connection Pools

In the last chapter we compared pools to the registers or checkers in a supermarket.
A set number of checkers are open at any given time, and the shopper doesn’t
care which checker they get, then they choose the first available checker so they
can get out of the store as soon as possible.

To take this analogy a step further, imagine now that only two registers are open
during a busy time at the supermarket. What happens? If you’ve never experienced
this (lucky you) then you can probably imagine that there would be a long line
of angry customers. This is analogous to what happens when your database
connection pool is too small. The number of connections to your database controls
how many concurrent queries can be executed against it. If there are too few
connections in the pool then you’ll have a bottleneck in your application, increasing
response times and angering end users (who, like Inigo Montoya, hate waiting).

Problem
Database connections are pooled for several reasons:

create them on the fly we opt to create them beforehand and use them
whenever we need to access the database.

connections and share them across all business transactions.

your database.

The first two points make sense because we want to pre-create expensive resources
and share them across our application. The last point, however, might seem counter-
intuitive. We pool connections to reduce load on the database because otherwise
we might saturate the database with too much load and bring it to a screeching halt.
The point is that not only do you want to pool your connections, but you also need
to configure the size of the pool correctly.

If you do not have enough connections, then business transactions will be forced to
wait for a connection to become available before they can continue processing. If
you have too many connections, however, then you might be sending too much load
to the database and then all business transactions across all application servers will
suffer from slow database performance. The trick is finding the middle ground.

Symptoms
The main symptoms of a database connection pool that is sized too small are
increased response time across multiple business transactions, with the majority
of those business transactions waiting on a Datasource.getConnection() call, in
conjunction with low resource utilization on the database machine. At first glance
this will look like a database problem, but the low resource utilization reveals that
the database is, in fact, under-utilized, which means the bottleneck is occurring in
the application.

The symptoms of a database connection pool that is sized too large are increased
response time across multiple business transactions, with the majority of those
business transactions waiting on the response from queries, and high resource
utilization in the database machine.

So while the external symptoms between these two conditions are the same, the
internal symptoms are the opposite. In order to correctly identify the problem, you
need to find out where your application is waiting on the database (for a connection to
the database or on the execution of a query) and what the health of the database is.

Impact

The impact of a misconfigured database connection pool rates an 8 on my scale
because the performance impact will be observable by your users. The fix is simple
but will require time and effort: use load testing and a performance analysis tool to
find the optimal value for the size of your database connection pool, and then make
the configuration change.

8

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 10

Database cont’d

Troubleshooting
Identifying that you truly have a database connection pool configuration problem
requires insight into what your application is doing:

your database is underutilized then your connection pool is too small

PreparedStatement.execute() and the database is over-utilized then your
connection pool is too large (or your database and your queries need to be
tuned!)

Avoiding this problem
Database connection pool problems are really a combination of connection pool
size tuning, SQL query tuning, and database tuning. If your queries are optimized
and your database is properly tuned then your database can support more load
than if your queries are sloppily written and the database is not tuned. Therefore
I recommend the following approach:

1. Tune your SQL queries, either manually using your favorite SQL tuning
book as a guide or automatically using a tool like SQL Optimizer. Ensure
that your SQL is top-notch (and this includes your HQL and EJBQL
as well).

2. Estimate the relative balance between the various queries your application
will be executing (determined by your estimation of business transaction
balance and your understanding of the queries executed by each business
transaction).

3. Execute a load test against our database and tune your database to
optimally support these queries.

4. Load test your application in a production-like environment (same number
and same class of machine if possible). Run multiple iterations with
different database connection pool settings and choose the best fit for your
application. You want to ensure that you do not saturate the database, so
if you can find the number of connections just below that saturation point
then you have your golden value.

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 11

Memory

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 12

Memory
Today, most modern programming languages run in managed environments. When
Java first entered the scene back in 1996, however, this wasn’t the case. Other than
a simplified syntax, managed memory was one of the biggest improvements that
Java introduced. With Java’s memory management, traditional C/C++ memory
leaks could be easily avoided, making it easier than ever to build stable and secure
applications. But managed memory was a mixed blessing for Java developers,
who now had to deal with an entirely different beast – Java’s garbage collector.
In the last 15 years, Java developers have established best practices for tuning
garbage collection and properly managing objects in Java’s managed memory
model. However, not every developer is as intimately acquainted with object
lifecycles and garbage collection behaviors as those that built applications without
the aid of automatic memory management. As a result, memory-related problems
still plague modern Java applications. In this section we’ll take a look at the two
most common memory issues in Java apps:

4. “I’ll stop the world … and melt with you”: STW
Garbage Collections

It’s nice when Modern English sings it, but “stop-the-world” can have much graver
implications when it comes to your Java application. Stop-the-world garbage
collection refers to a major garbage collection that freezes all running threads in the
JVM in order to reclaim memory. It’s actually a normal process, and it isn’t a problem
in itself unless it 1) takes too long to complete, or 2) occurs far too often.

Problem
To understand when and why garbage collection pauses the JVM, first we’ll need
to understand a little bit about how garbage collection works in Java. Different
JVM implementations and different JVM garbage collection strategies manage
heaps differently. For the purposes of this discussion I will focus on the Sun

JVM. The Sun JVM is a generational JVM that divides the heap into two primary
generations: the young generation and the old generation. Figure 4.1 shows the
arrangement of the Sun heap.

Figure 4.1

As shown in Figure 4.1, the young generation is divided into three spaces: the
Eden space and two Survivor Spaces (From space and To space), while the
Tenured Space consumes the old generation. The object lifecycle can be defined
as follows:

1. Objects are created in Eden

2. When Eden is full a minor mark-sweep garbage collection is performed

3. Objects that survive the mark-sweep garbage collection are copied to the
To survivor space

4. If there are existing objects in the From survivor space then those are
copied to the To survivor space

5. Once the To survivor space is full, all live objects left in Eden and the From
survivor space are tenured, or copied to the Tenured Space

This lifecycle is summarized in Figure 4.2.

Managed memory refers to the management of memory by the environment, or JVM in this
case, and not the programmer. In other words, you, as the programmer, cannot directly
manage memory by deleting objects that you no longer intend to use, but rather the JVM
will delete memory on your behalf.

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 13

Memory cont’d

Figure 4.2

The next lifecycle that you need to be aware of is how objects are claimed during
a major collection. A Major garbage collection, also known as a stop-the-world
(STW) collection, does just that: it freezes all threads in the JVM, performs a
mark-sweep collection across the entire heap, and then performs a compaction.
The result is that the entire young generation is free and all live objects are
compacted into the old generation. This is a very effective garbage collection, but
it is both very slow (on the order of 10x minor collections) and impactful to your
users because no threads are able to run during this collection. So in essence it
“stops the JVM world” for however long it takes to run. And the amount of time
will be directly proportional to the size of your heap. In a modest 2-3 gigabyte
heap this might be 3-5 seconds, but if you are running a 30-gigabyte head this
could be more on the order of 30 seconds.

There are strategies to minimize the impact of stop-the-world collections,
such as the Concurrent Mark Sweep (CMS) garbage collection strategy, which
maintains an additional thread that is constantly marking and sweeping objects,
and the new G1 garbage collection strategy, which attempts to collect popular
sections of the heap, but neither of these completely eliminate stop-the-world
compactions. Azul Systems claims to have built the first concurrent compaction
garbage collector, so if you’re running a huge heap and need to avoid garbage
collection pauses then you might want to take a look at their Zing JVM.

Symptoms
The symptoms of stop-the-world garbage collection include periodic CPU spikes
and aberrant response times. You might observe that your application is performing
well most of the time but once or twice an hour your SLAs set off alerts. If you have
a performance monitoring solution in place then you can also observe an increase
in the frequency of major garbage collection occurrences as well as a pattern of
increase in your old generation followed by a dip. Remember that objects in the old
generation can only be reclaimed by major garbage collections, so whenever you
see the old generation shrink, it means that a major garbage collection occurred.

Impact

The impact of stop-the-world garbage collection is a pause for the duration of the
major garbage collection. In terms of user experience, this means that periodically
users are going to see egregiously slow response times, the frequency and
duration of which will be proportional to the size of your heap and to the behavior
of your application. Furthermore, if your heap’s configuration does not allow
short-lived objects enough time to die in the young generation then the impact
will be exacerbated.

Troubleshooting
There are several ways of troubleshooting major garbage collections:

Java startup and search the resultant log file for “FULL GC” entries. Each
“FULL GC” entry corresponds to a major collection.

occurrence counts and look for frequent increases

CPU and heap usage (preferably partitioned by generation) and look for
CPU spikes and frequent increases and dips in heap usage

8

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts
http://www.azulsystems.com/
http://www.azulsystems.com/products/zing/whatisit

Top Ten Most Common Java Performance Problems 14

Memory cont’d

Avoiding this problem
Avoiding major garbage collections is almost impossible, but there are some
things that you can do to help mitigate the problem:

1. Ensure that your heap is sized in such a way that short-lived objects are
given enough time to die. The recommendation here is to set the young
generation to a little less than half the size of the heap (-XX:NewSize and
–XX:MaxNewSize command line arguments) and then to set the survivor
ratios to anywhere between 1/6th and 1/8th the size of the young generation
(-XX:SurvivorRatio=4 or –XX:SurvivorRatio=6. It’s a strange formula, but 4
equates to 1/6th of the young generation and 6 equates to 1/8th the size
of the young generation). This will make minor garbage collections take
longer to run but they can run without freezing JVM threads.

2. Consider enabling concurrent mark sweep (CMS). This increases the CPU
overhead on the machine upon which the JVM is running, but it can reduce
the pause time for major collections.

3. Cycle your JVMs: if you are running in an elastic environment, such as in a
cloud like Amazon’s EC2, and you regularly scale up and down throughout
the day, you might consider cycling down older machines first. In this
capacity you can maintain a much larger heap and shut down the JVM
before a major garbage collector ever has a chance to run.

4. Explore Azul System’s Zing JVM with its concurrent compaction garbage
collector to see if it is a good fit for your business needs.

5. Where’s My Memory? Memory Leaks
Hey, wait a minute. I thought that automatic garbage collection means no more
memory leaks. What gives?

If you come from a programming language like C or C++, in which you were
responsible for managing memory yourself, then this style of traditional memory
leak is truly avoided by the garbage collector. But if this is true, then why do we
continue to see memory leaks in Java?

Problem
The symptoms of C/C++ style memory leaks and Java memory leaks are the same,
but the manner in which we arrive there is different. Memory leaks in Java are much
more of a reference management issue than they are true memory leaks. Figure
5.1 shows a comparison of C/C++ style memory leaks and Java memory leaks.

Figure 5.1 C++ Style versus Java Style Memory Leaks

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 15

Memory cont’d

In C/C++, a memory leak occurs when you allocate memory, assign the address
of that memory to a reference variable, and then delete the reference to that
memory without first de-allocating that memory. This is exactly what the Java
garbage collector was designed to avoid, and from this perspective it works
flawlessly. The left side of figure 5.1 shows an allocated chunk of memory that is
lost when its reference is deleted. The JVM garbage collector handles this C/C++
style memory leak.

Java memory leaks are a different beast altogether: they occur when a Java
application inadvertently maintains a reference to an object that it does not ever
intend to use again. There is no definitive way for the garbage collector to assess
the intentions of the developer who built the application, so if a reference to an
object is maintained, the garbage collector will assume that someone intended to
use it at some point in the future. Unfortunately this tends to occur in code that
is frequently executed, causing the JVM to eventually exhaust its memory and
throw the dreaded OutOfMemoryError, which usually means you have to restart
your JVM.

To understand why this behavior truly is a problem, you need to understand the
reachability test that the garbage collector performs as part of its mark phase.

Referring again to Figure 5.1, when a garbage collection starts, the first thing it does
is perform a reachability test. In this test the garbage collector looks at all objects
directly visible by each running thread (these objects are collectively called the root
set) and then walks over the heap from object to object until it has determined
the set of objects that are reachable. All reachable objects are marked and then
the garbage collector executes a sweep process that sweeps away all unmarked
objects. In other words, it reclaims the memory referenced by all non-reachable
objects. Therefore, if an object is reachable, or there exists a path from the root set
to the object, then it cannot be reclaimed by the garbage collector.

Symptoms
The symptom of a Java memory leak is a gradual (or rapid, if it’s a big memory
leak) increase in memory usage until the heap eventually runs out of memory.
Unfortunately there is no definitive way of differentiating between simply running
out of memory and a memory leak, but there are ways to infer what is happening,
which are summarized below.

Impact

Depending on the severity of your memory leak and how quickly it takes down your
JVM, the impact can be severe. When a JVM runs out of memory, it must be killed
and restarted before it can service any additional requirements. From an operations
perspective, you’ll find yourself switching between machines and restarting JVMs
potentially several times a day.

Troubleshooting
Identifying the root cause of a memory leak is challenging but fortunately there are
some behaviors of memory leaks that are common across the board. It may sound
obvious, but memory leaks can only occur inside containers that support unbounded
growth. Java natively supports unbounded growth through its Collection classes: it
maintains lists, maps, and sets supported by linked lists, arrays, trees, hash tables,
and more, which can all grow without bound. Consider a common scenario that
leads to a memory leak: on a per-request basis (or on a subset of requests), the
application adds an object to a collection but does not remove it from the collection
when it’s done. Because this occurs as a result of user interaction and the user
continues to interact with your application, the end result is a memory leak.

The good thing is that because of this behavior, intelligent analysis can be performed
to detect this behavior and point to suspected memory leaks. Figure 5.2 shows
what this might look like in a production application with a memory leak.

9

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 16

Memory cont’d

Figure 5.2 shows the memory usage pattern by a specific collection instance. In
this case the memory used by the HashSet is increasing over time and, at the time
this diagram was built, the HashSet contained 35,259 elements, which points to
the potential for a memory leak.

Finally, you can troubleshoot the root cause of a memory leak after the fact (which is
not ideal) by requesting the JVM to capture a heap dump when an OutOfMemoryError
occurs. This is accomplished by using the -XX:-HeapDumpOnOutOfMemoryError
JVM argument, which is documented on Oracle’s web site. Analyzing the resultant
heap dumps can be a daunting task, but in the past I have found the Eclipse Memory
Analyzer (MAT) to be a helpful tool.

Avoiding this problem
Avoiding memory leaks requires close scrutiny of code where memory leaks
can occur, namely around Java collection classes. Additionally, I have found that
memory leak-like symptoms can occur around session management: memory
used by user sessions will eventually be reclaimed by the garbage collector,
but if the heap exhausts its memory before the sessions expire, then session
memory can cause OutOfMemoryErrors.

Here are some tips to help you avoid memory leaks:

1. Share common memory leak scenarios, such as managing data in Java
Collection classes, with your developers and ask them to review their
code in that light

2. Employ a Java memory profiler to analyze code during development.
Execute a load test against our database and tune your database to
optimally support these queries.

3. Monitor the application in production to detect potential memory leaks
(including capabilities for observing changes in collection classes)

4. Configure your JVM to capture a heap dump when an OutOfMemoryError
occurs and analyze that heap dump using a tool like Eclipse Memory
Analyzer

Figure 5.1 C++ Style versus Java Style Memory Leaks

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 17

Concurrency

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 18

Concurrency
It is rare to find an enterprise application that doesn’t need to do more than one thing
at once. Concurrency refers to executing several computations simultaneously.
Every programming language has various strategies for managing concurrently
running code. Running multiple simultaneous threads is a simple task as long as
they do not interact with mutable shared objects (objects that are accessible by
more than one thread and those objects can be changed).

Consider two threads that are simultaneously trying to increment the number 5
contained in variable A. If there are two increment operations then when all is said and
done, A should have the value of 7 (5 + 1 + 1 = 7). Consider the situation when both
threads run at the same time and the increment operator is not atomic (meaning that
it is not guaranteed to run in a single operation.) In this case the increment operation
retrieves the value from the variable A, adds 1 to it, and then assigns it back to the
variable A. Consider that thread 1 reads the value of A (5) and then thread 2 reads the
value of A (5), then thread 1 increments it to 6 and assigns it back to A followed by
thread 2 that does the same thing (increments 5 to 6 and assigns it back to A.) So what
is the value of A after this? A has the value of 6, which is wrong.

In Java we manage thread concurrency using synchronization. Each Object in
Java has a lock and when a thread wants to execute the code in a synchronized
block (denoted by the synchronized keyword) it must first obtain the object’s
lock. If the lock is not available then it means that another thread already has the
lock so this thread must wait for the lock to be released. As you might guess,
synchronization can lead to all kinds of functional and performance issues.

This section reviews three concurrency-related performance problems:

6. Hot Fudge Sundae Standoff: Thread deadlocks
Consider two children that want to make hot fudge sundaes: the first child grabs the
ice cream and the second child grabs the chocolate syrup. The first child has ice cream,
but no chocolate, and refuses to give up his ice cream until he gets the chocolate. The
second child has the chocolate, but no ice cream, and refuses to give up his chocolate
until he gets the ice cream. In this scenario, who gets the hot fudge sundae?

I know what you’re thinking: the bigger kid takes what he wants from the smaller kid.
In Java programs, however, there is no bigger kid. Instead, they both starve.

Problem
Deadlocks occur when two or more threads need multiple shared resources to
complete their task and they access those resources in a different order or a different
manner. Java concurrency works under the notion of “locks.” When a method or a
block of code is synchronized, the executing thread obtains the lock for the object
upon which the code is synchronized, executes the synchronized code, and then
relinquishes that lock. If a second thread attempts to execute the synchronized code
while the first thread has the lock then the second thread “waits” until the lock is
available. If the lock is never released then that thread will wait forever, or until the
JVM is restarted.

What happens in this scenario is thread 1, which has the first lock, needs to execute
a block of synchronized code, but that lock is held by thread 2. And thread 2 is
waiting on the lock held by thread 1. Thread 1 has the ice cream and thread 2 has the
chocolate, so these two threads are deadlocked.

Concurrency refers to the execution of several computations simultaneously, or, in other
words, multithreaded programming. Concurrency is important because it allows your
application to accomplish more work in less time.

Mutable shared objects are objects that are shared or accessible by multiple threads, but can
also be changed by multiple threads. Ideally any objects that are shared between threads
will be immutable, meaning that they cannot be changed – immutable shared objects do not
pose challenges to multithreaded code.

Code deadlocks occur when two or more threads each possess the lock for a resource the
other thread needs to complete its task and neither thread is willing to give up the lock that it
has already obtained.

In a synchronized code block, a thread must first obtain the lock for the code block before
executing that code and, while it has the lock, no other thread will be permitted to enter the
code block.

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 19

Concurrency cont’d

Symptoms
When your application has a deadlock in it, your JVM will eventually exhaust all or
most of its threads. The application will appear to be accomplishing less and less
work, but the CPU utilization of the machine on which the application is running will
appear underutilized. Additionally, if you request a thread dump you will see reports
of deadlocked threads.

Impact

Deadlocks are serious business and will eventually cause your application to stop
processing business transactions. Even worse, the only way to resolve the issue is
to restart your JVM, which takes it out of availability to service your users. Finally,
because deadlocks are the result of race conditions (multiple threads competing
for resources and typically using them for a very short period of time) they are very
difficult to reproduce in a non-production environment and hence very difficult to
troubleshoot.

Troubleshooting
As mentioned above, deadlocks are nearly impossible to reproduce in a development
environment so troubleshooting one is very challenging. The only way that I have
successfully discovered the root cause of a deadlock is by capturing a thread dump
while two threads were deadlocked and then examining the stack traces of the
deadlocked threads. This strategy points out where a deadlock occurred but it does
not provide sufficient application context to definitively determine why it occurred.
In my case I then examined the code and built theories about what could have
happened and because of my understanding of the code, I was able to derive a
reasonable case for it happening. Luckily after resolving the potential issue we did
not observe the deadlock again.

Avoiding this problem
Avoiding deadlocks is only really accomplished by making your application and
its resources as immutable as possible. If you are interacting with immutable
resources (resources that cannot change) then you won’t need to synchronize
access to those resources, avoiding deadlocks altogether. But, depending on
your application business requirements, this may not be possible. My only
recommendation, if you are unable to make your resources immutable, is to
use thread synchronization as sparingly as you can and to search for potential
interactions between threads that might enter two or more synchronized blocks
in a single business transaction.

7. Accident Ahead, Merge Right: Thread Gridlocks
If you live in a busy metropolitan area and don’t take public transportation, then
chances are you could probably best describe your daily commute as “hurry up and
wait.” Traffic going in and out of big cities is pretty abysmal on an average day, but
when an accident occurs things get dramatically worse – sometimes you can be
stuck in gridlock for hours before you finally get past the bottleneck.

We just finished up talking about thread deadlocks, but there is another performance
issue that we can face with thread synchronization: for lack of a formal term I’ll call it
gridlock. An application under heavy load is like a freeway during rush hour – things
are moving a little slower than usual, but for the most part everything’s working fine.
If your application is “over-synchronized,” however, then you’ve essentially merged all
the lanes of your freeway down to one, resulting in a lot of slow and stalled threads
(and some unhappy end users).

To give you a real-world example of this, in a previous company our rule engine was
not thread-safe and almost every request was required to execute rules. Under small
amounts of load this was not a problem, just like merging from two lanes to one
lane with a handful of cars is not very problematic. But when load increased we saw
a dramatic jump in response time, just like experiencing that same traffic merger
during rush hour. So although we were able to support hundreds of simultaneous
requests on the box, in the end we built a single-threaded lane through which all
traffic needed to pass.

10

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 20

Concurrency cont’d

Problem
Thread synchronization is a powerful tool for protecting shared resources, but if major
portions of your code are synchronized you might be inadvertently single-threading
your application. Figure 7.1 shows what this might look like in your application.

Figure 7.1 All threads merging through a single synchronized block

Symptoms
If your application has too much synchronization or synchronization through a core
piece of functionality that is required by a large number of business transactions,
then you will see slow response times with very low CPU utilization. The reason
for this is that each of these threads is going to reach the synchronized code and
go into a waiting state. So essentially one thread will be active at a time, which
typically does not require much CPU to run. Additionally, if you capture a thread
dump then you will see a large number of threads in a legitimate wait state:
WAITING or TIMED_WAITING

Impact

Over-synchronization can have a dramatic impact on performance and if you are
experiencing it, things are not going to get any better until you remove that block.
And worse still, the problem gets worse as load increases. I remember that this
problem was one that caused me many late nights and overtime.

Troubleshooting
In order to identify the root cause of over-synchronization you will need either a
method-level view of the performance of your business transactions or frequently
captured thread dumps. You need to know where your code is waiting and why
each of those threads is waiting. Once you know where your threads are waiting,
it’s up to you to refactor the code to eliminate that synchronized requirement.
The refactoring effort is why I mentioned that this led to late nights and overtime:
it’s not a quick fix.

Avoiding this problem
The same advice for deadlocks is applicable for gridlocks: try to use immutable
resources whenever possible, use synchronization sparingly, and perform deep
analysis of synchronized code blocks to determine their impact on your business
transactions. Thread synchronization issues are really solved at the architectural
level rather than at the implementation level; your application has to be architected
to avoid these types of problems.

8

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 21

Concurrency cont’d

8. Please hold, your call will be answered
in the order received: Thread Pool
Configurationridlocks

Have you ever had the unpleasant experience of calling your cable provider to
troubleshoot a problem? If you call to upgrade your service you’ll be helped in a
matter of seconds, but if you’re trying to get help you’d better block off the better part
of your day. Call centers, like thread pools, are of a finite size, and when they’re too
small for the amount of traffic they’re required to service you can end up with some
angry end users.

If your application is running in an application server or web container, it will
have a thread pool configured to control how many requests your application can
concurrently process. Figure 8.1 shows the behavior of a thread pool in a web or
enterprise application.

The thread executes the appropriate business transaction in your application
code. When the thread completes processing the thread is returned to the thread
pool and will be available to process another request.

Problem
The configuration of the size of that thread pool is going to be of paramount
importance to the performance of your application. If the thread pool is sized too
small then your requests are going to wait (much like you would while on hold
for your cable provider) but if the thread pool is sized too large then too many
threads are going to execute concurrently and take all of the machine’s processing
resources. When there are too many threads and the machine spends too much
time context switching between threads, the threads will be “starved” of CPU
cycles and will take longer to complete. You have a finite number of cores in your
CPU and if threads need computing power (they aren’t waiting) then there’s only
so much processing power to go around. The behavior of your application will
dictate the optimal size of your thread pools.

Symptoms
When a thread pool is sized too small then you will see the thread pool utilization
(number of active threads divided by the total number of threads) at or near 100%,
requests backing up in the execution queue, and the CPU underutilized. The
reason is that the application has used all available threads but is not using all of
the processing capabilities available to it on the machine. And because it cannot
process requests fast enough, requests back up.

When a thread pool is sized too large then you will see a moderately used thread
pool, very few if any pending requests in the execution queue, but the CPU utilization
will be at or near 100%. The reason for this is that the application has more threads
than the machine is equipped to process.

The server receives a request by a socket listener, places it in an execution queue,
and then returns to listen for the next request to arrive on the socket. The execution
queue is serviced by a thread pool. When a thread is available in the thread pool, a
request is removed from the execution queue and passed to a thread for processing.

Figure 8.1 Server Request Threading Model

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 22

Concurrency cont’d

Impact

Both situations are high impact on the performance of the application, and hence
your user experience, but for different reasons. With a small thread pool, your
application is not attempting to do as much as it can do (the under-performer).
With a large thread pool, your application is trying to do too much (the over-
achiever that takes on too much work and ends up not delivering).

Troubleshooting
Troubleshooting thread pool sizing problems is actually a lot easier than the other
performance challenges presented in this eBook. The key is to look at two metrics: :

If your thread pool utilization is high (at or near 100% with pending requests) and
your CPU utilization is moderate then your thread pool is probably configured
too small.

If your thread pool utilization is moderate, but your CPU utilization is high then your
thread pool is probably configured too large.

Avoiding this problem
The way to avoid thread pool misconfigurations is to tune the thread pool. This
sounds easy in theory, but it’s time consuming in practice. In short, you want
to size your pool large enough to properly utilize your machine’s processing
resources but not large enough to saturate them. But there’s a complication: if
your application accesses external resources, such as a database, your application
should be configured to send enough load to those external resources to use
them effectively, but not saturate them.

7 I have detailed a performance tuning strategy called Wait-Based Tuning that I have
successfully used in customer environments. The essence of this strategy is, through an
iterative process, to determine the capacity of your external resources, configure your
application to send the appropriate volume of requests to those resources (using a gating
control like a database connection pool) and then tune backwards all the way to your thread
pool. The goal is to leave pending requests in the execution queue and streamline requests
through your application architecture.

You can read more about Wai-Based Tuning on InfoQ.com.

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts
http://www.infoq.com/articles/Wait-Based-Tuning-Steven-Haines

Top Ten Most Common Java Performance Problems 23

DEFCON 1

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 24

DEFCON 1
The defense readiness condition (DEFCON) is a system that defines graduated
levels of readiness for the U.S. Military, but because of its popularity in movies and
on the news, it has come to connote the severity of some measured condition.
DEFCON 5 refers to “the lowest state of readiness,” or peace, while DEFCON 1
refers to “nuclear war is imminent,” or the most heightened state of readiness.
I titled this section DEFCON 1 because it presents performance issues, from a
process perspective, that you can’t afford to ignore. These are the things that, if
you do not address them, will result in working long nights and weekends and
maybe even losing your job.

Specifically this section addresses two DEFCON 1 issues:

9. We don’t need no stinking performance:
Performance as an afterthought

If you wanted to build a racecar, would you start with a basic sedan and then make
upgrades, or would you build it from scratch? You’d build it from scratch, because
a sedan isn’t built for speed, and the work and resources that would be required
to turn a sedan into a racecar would far exceed those needed to build a racecar
from the start. The same holds true of your application – if you didn’t design it for
performance, then it’ll take a lot of time and effort to make it perform once it’s
built. The best solution is to consider performance as an important feature from
the very beginning.

Problem
Software architects and developers are typically pretty good at coming up with
elegant solutions to complex problems. After all, it’s what they’re paid to do.
However, sometimes the most elegant or concise solution isn’t always the best-
performing solution, as anyone who’s ever deployed new code to production will
know. This is true both of high-level architecture as well as low-level implementation
details throughout the entire project. Should you use a HashMap or a TreeMap
here? What’s the best algorithm to sort this data? These are questions that
development teams face on a day-to-day basis, but their decisions don’t always
take into consideration the performance of their code in a production environment.

Aside from analyzing the performance and scalability implications of your application
architecture for when you eventually deploy it to a production environment, a
problem that you can tackle immediately is: when do you start measuring the

performance of your code? If your answer is that you build the functionality of your
application completely first and then look at refactoring your code for performance
later, then you’re going to find yourself in a heap of rework (you just built a Ford
Pinto that you now need to turn into a 10-second street racing car!).

Note: If you find yourself in this camp, don’t beat yourself up, you’re in good company. The majority
of the customers I visited in my performance tuning consulting practice followed the same strategy:
make the application function properly first and then worry about performance. I’m here to encourage
you to change this behavior, but just note that this is how most companies develop software.

Symptoms
Your company has spent anywhere between six months and several years building
your application. You’ve been through program quality assurance (sometimes
just called PQA) and it meets its functional requirements, but it falls over in load
testing. You thought you were ready to ship the product but it turns out you’re
months behind because you need to analyze the performance of your application
and refactor the components that do not meet performance requirements.

Impact

The impact of this problem is a 10 because it will require many hours, days or even
weeks of development work to be fixed. The amount of work and time required
depends on the nature of the performance issues you’ve unveiled, but in my
experience the problem is usually related to the architecture of the application,
which requires substantial work to fix. When working with customers to discover
these problems, I typically left them with a two-fold plan: (1) Identify and resolve
the “quick fixes” to improve performance for the time being, and (2) Address the
underlying architectural issues that you need to resolve in the long-term.

10

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

Top Ten Most Common Java Performance Problems 25

DEFCON 1 cont’d

Troubleshooting
Troubleshooting the root cause of performance and scalability issues is a non-
trivial task. My approach was always to first review the application architecture and
understand how a request traverses through the application from when the web
server receives the request to when a result is rendered back to the user. That
architectural analysis identifies points of performance contention that I would then
validate using performance analysis tools. Without performance analysis tools you’re
limited to adding additional logging and reviewing those logs – it can be done, but
it is a time-consuming activity. For more information on understanding how your
application architecture affects performance, review my performance-tuning article
on InfoQ.com.

Avoiding this problem
The simple way to avoid this problem is to implement proactive performance
analysis of your application code during development. A strategy that I’ve
successfully employed is to measure the performance of code as it is being
developed at the unit test level. If you write very granular unit test cases – which
you should – they will provide a natural point for measuring performance. If you
can capture the response time of unit tests as well as their memory utilization,
then you can compare that across builds and detect changes in performance.
There are commercial tools to help you do this, and I have written an article on
doing this type of analysis using HProf, which is a profiler built into the JVM,
that you can find on InformIT.com. The best strategy is to integrate this level of
analysis into your continuous integration environment and perform the analysis
programmatically. Manual analysis is tedious and, in the end, you’ll find yourself
skipping it when time is short, but if the analysis can be automated then you just
need to review reports that are associated with your build, just as you would
test failures.

10. Monitoring on the Super-Cheap: Having your
users tell you about performance problems

If you’ve worked in IT for long, you probably know the embarrassment of getting a call
from your boss telling you that users have started reporting performance problems.
It’s far better to detect the start of a problem and resolve it before your users are
ever aware there’s a problem than it is to have to get a call from your boss telling you
something’s wrong. By the time the performance issue has been reported by your
users, made it way up to executives and back down to your boss, your end users and
your business have already been affected by the performance issue – not to mention
your job security.

Problem
Performance problems rarely appear out of the blue like an F5 Tornado. Instead, they
typically approach like a hurricane, with warning signs that an issue is developing
long before your or your end users notice the problem. The challenge for you as an IT
professional is to equip your systems to detect and alert on these signs so that you
can begin addressing the problem before your end users start complaining.

There are various technologies that you can use to detect performance problems, including:

containers report metrics about their internal behavior through JMX. You will
find things like thread pool usage, connection pool usage, cache hit/miss ratios,
concurrent sessions, and more. JMX is a powerful technology and there are
commercial and free tools that retrieve JMX metrics from servers for you.
The benefit to JMX is that it exposes runtime metrics about the container/
application server in which the application is running. The drawback to JMX is
that it seldom presents response time metrics and does not tie requests to
the response times of the methods that satisfy a request.

response time and execution counts for your business transactions. It would
be even better to understand, on whatever level of granularity you want, the
minimum, maximum, and average response times for business transactions
as well as the standard deviation of response times so that you can more
effectively assess the impact of outlier response times. From a business
transaction perspective you can capture response times using AOP or even a
simple Servlet Filter. There are free and commercial tools to help you capture
this information without manual coding on your part. The benefit to capturing
business transactions is that they reflect the behavior of your application as
experienced by your users. The drawback to using business transactions
alone is that while they show user behavior, they need to be combined with
container metrics, such as JMX, in order to understand whether or not a
method is slow because of the code or because of the environment.

to identify where it goes wrong. This is a little harder to capture without a
commercial tool, but the end goal is to identify the response time of
each method and associate that response time to individual business
transactions. When a business transaction runs slow, identifying the
methods contributing to the total response time will help you identify
the root cause. The benefit to capturing method-level response times is
that they identify hotspots in your application. The drawback, however, is
that hotspots do not pinpoint the impact of the application on your users
because they are not tied to business transactions.

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts
http://www.infoq.com/articles/Wait-Based-Tuning-Steven-Haines
http://www.infoq.com/articles/Wait-Based-Tuning-Steven-Haines
http://www.informit.com/guides/content.aspx?g=java&seqNum=363

Top Ten Most Common Java Performance Problems 26

DEFCON 1 cont’d

monitoring your environment then you do still have the option of capturing
thread dumps and analyzing the time spent in methods that way. This is a
challenging exercise and involves capturing thread dumps on a very frequent
basis, such as every 50ms or 100ms, and then looking at methods that are
still running between thread dumps. Your sampling period will dictate the
granularity with which you can trust the results. But without modifying your
code to associate a business transaction with a thread identifier, you will
not be able to identify which business transaction a method belongs to. The
benefit to using thread dumps is that they show exactly what each thread
is doing at a point in time and analyzing thread dumps will identify threads
that are stuck. The drawback is that you need multiple thread dumps in
close proximity and it is a labor-intensive process to be able to interpret
what your application is doing.

you can trigger memory dumps and use a tool like MAT to review the contents
of the memory dump. Without tools this is a complex process. The benefit to
capturing memory dumps is that they allow you to understand what objects are
consuming the memory in your JVM. The drawback is that the analysis is very
complex and would be better suited to an automated process.

individual network packets as they pass from machine to machine to gain
insight into the behavior of your application – and even identify data being
passed between your application and other services. This is not a job for the
faint of heart, but it is very powerful. If you are interested in learning more, take
a look at the free and open source Wireshark project and the book Practical
Packet Analysis: Using Wireshark to Solve Real-World Network Problems to get
you started. The benefit to packet analysis is that you can track the interactions
between servers and their response times as well as track interactions using
any transmission protocol. The drawback is that packet analysis only shows part
of the behavior of your application and it requires a significant investment of
your time to learn how to do it right.

Symptoms
It probably goes without saying, but the symptoms of ignoring performance until your
users alert you to the problem are calls from users, the escalation of possibly trivial
problems to executives in your company, and late nights and weekends of work as all
other priorities are thrown to the wind until this performance issue is resolved!

Impact

While a performance issue might not be the end of the world, bad publicity and
loss of customer loyalty can do lasting damage to your company. The impact of
this kind of issue varies greatly by industry and business model – for example, an
eCommerce application will suffer much more than an internal finance or CRM
application in a small business. A poor user experience is never a good thing,
however, and you’ll look much better to your boss if you can catch performance
issues before the end users start calling.

A business transaction represents an interaction with your application, either from a user
or a system. But more than that, a business transaction defines this interaction in terms
of the functionality of your application. An example is a web request pattern that you
can translate to a significant interaction with your application such as “Add an item to a
shopping cart” (e.g. POST /cart) or “View Product” (e.g. GET /product).

10

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts
http://www.wireshark.org/
http://www.amazon.com/Practical-Packet-Analysis-Wireshark-Real-World/dp/1593272669
http://www.amazon.com/Practical-Packet-Analysis-Wireshark-Real-World/dp/1593272669

Top Ten Most Common Java Performance Problems 27

DEFCON 1 cont’d

Troubleshooting
As mentioned above, there are various commercial and free tools to help you put
some degree of performance monitoring in place. Consider the various technologies
listed above, from JMX monitoring through full business transaction monitoring
with method-level response time granularity, and determine what price point and
featureset best suit your application and your business. Also be aware that while
generic monitoring solutions are challenging to build, specific monitoring solutions
are far easier. You might not want to re-engineer your entire application, but adding
a Servlet filter to capture response times and a couple counters can go a long way
toward helping you address these problems before you make the investment into a
robust monitoring solution.

Avoiding this problem
After you assess the impact of performance issues in your environment, if you
determine that bad press and a poor user experience could dramatically hurt your
business, then the best way to manage performance is to invest in a performance
monitoring tool. You can piece together technologies to help you, but if you have
a revenue-generating application then some vendors can get you very detailed
performance information in a matter of minutes. And if you do not want to invest in
performance monitoring infrastructure then some vendors also provide monitoring
solutions securely in a Software-as-a-Service (SaaS) model, so that your environment
in only marginally impacted.

Regardless of whether you decide to purchase a commercial product or pull together
a set of monitors to give you some insight into your application performance, the
important thing is that you do something. Trust me, you won’t regret detecting a
performance problem and resolving it before your users are even aware that there
was a problem to begin with!

FURTHER READING
If you found this information interesting, you can read more about these strategies
in my book, Pro Java EE 5 Performance Management and Optimization.

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts
http://www.amazon.com/Pro-Java-Performance-Management-Optimization/dp/1590596102

Top Ten Most Common Java Performance Problems 28

You could easily spend years learning and refining your knowledge
of performance analysis. This eBook just scratched the surface
of common problems that you may have already observed in your
own environment – it’s not meant to be exhaustive, but rather to
alert you to common problems and to raise awareness of the need
to take performance seriously in every stage of the application
lifecycle.

This eBook reviewed performance issues in four main categories:

•	 Database:	Because	databases	ultimately	back	enterprise	
applications, we reviewed three common performance
issues involving the database: database persistence
configuration, caching, and database connection pool
configuration.

•	 Memory:	 While	 automatic	 memory	 management	 was	
one of Java’s strongest innovations, it is both a blessing
and a curse that can lead to performance issues. This
eBook reviewed the two most common memory-related
performance issues: garbage collection configuration
and memory leaks.

•	 Concurrency:	 As	 applications	 increase	 in	 complexity	
they need to accomplish more operations at the same
time, which leads to concurrency concerns. This eBook
reviewed three common concurrency and threading
issues: thread deadlocks, thread gridlocks, and thread
pool configuration.

•	 DEFCON	1:	This	eBook	concluded	by	discussing	two	“big	
picture”	no-nos:	Deferring	performance	considerations	to	
the end of your project and ignoring performance until
your users complain about performance issues

I hope you found this eBook useful, but more importantly, I hope
that you took this brief overview of common performance issues
as a call to take performance seriously. Hopefully you walked away
from this eBook armed with a litt le more knowledge about how to
avoid the worst of performance issues in your application.

Conclusion

http://www.linkedin.com/company/594846?trk=tyah
http://clicktotweet.com/VSOpB
https://www.facebook.com/pages/AppDynamics/193264136815
https://plus.google.com/101229005766361962596/posts

www.appdynamics.com © 2013 Copyright AppDynamics

http://www.appdynamics.com
www.appdynamics.com

	Introduction
	Database
	1. Death by 1,000 Cuts: The Database N+1 Problem
	2. Credit and Debit Only, No Cache:
The Importance of Caching
	3. Does anyone have a connection I can borrow? Database Connection Pools

	Memory
	4. “I’ll stop the world … and melt with you”: STW Garbage Collections
	5. Where’s My Memory? Memory Leaks

	Concurrency
	6. Hot Fudge Sundae Standoff: Thread deadlocks
	7. Accident Ahead, Merge Right: Thread Gridlocks
	8. Please hold, your call will be answered in the order received: Thread Pool Configurationridlocks

	DEFCON 1
	9. We don’t need no stinking performance: Performance as an afterthought
	10. Monitoring on the Super-Cheap: Having your 	users tell you about performance problems

	Conclusion

