
Separation of Concerns
Posted on February 5, 2012

The most important principle in Software Engineering is the Separation of

Concerns (SoC): The idea that a software system must be decomposed into

parts that overlap in functionality as little as possible. It is so central that it

appears in many different forms in the evolution of all methodologies,

programming languages and best practices.

Dijkstra mentions it in 1974: “separation of concerns … even if not

perfectly possible is yet the only available technique for effective ordering of

one’s thoughts”. Information Hiding, defined by Parnas in 1972, focuses on

reducing the dependency between modules through the definition of clear

interfaces. A further improvement was Abstract Data Types (ADT), by Liskov in

1974, which integrated data and functions in a single definition.

In the case of Object Oriented Programming (OOP), encapsulation and inheritance proved to be essential

mechanisms to support new levels of modularity. Design-by-Contract, proposed by Meyer in 1986, provides

guidelines of how to improve interfaces using pre-conditions and post-conditions. Finally, the separation of cross-

cutting concerns is the most important motivation for the proponents of Aspect Oriented Programming (AOP).

Since the first software systems were implemented, it was understood that it was important for them to be

modular. It is necessary to follow a methodology when decomposing a system into modules and this is generally

done by focusing on the software quality metrics of coupling and cohesion, originally defined by Constantine:

Coupling: The degree of dependency between two modules. We always want low coupling.

Cohesion: The measure of how strongly-related is the set of functions performed by a module. We always want

high cohesion.

All methodologies try to reduce coupling and increase cohesion. Information Hiding reduces coupling by isolating

the details of the implementation of state. ADTs reduce coupling by defining clear and abstract interfaces. An ADT

that specifies in a single definition the set of functions that can be executed on a type is certainly more cohesive

than a global data structure that is modified by external functions.

OOP adds another step in the reduction of coupling with the enforcement of encapsulation and the introduction of

dynamic binding and polymorphism. Inheritance allows us to increase cohesion by defining hierarchies based on

generalization and specialization, in which we can separate the functionality that belongs to the superclass from

its subclasses. AOP provides a solution for the problem of cross-cutting concerns, so that both the aspects and the

affected methods may become more cohesive.

There are many benefits that software developers expect to obtain when making a system more modular, reducing

coupling and increasing cohesion:

Maintainability: A measure of how easy it is to maintain the system. As a consequence of low coupling, there is

a reduced probability that a change in one module will be propagated to other modules. As a consequence of high

Effective Software Design

Separation of Concerns | Effective Software Design https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/

1 sur 4 31/10/2016 17:04



About Hayim Makabee

Veteran software developer, enthusiastic programmer, author of a book on Object-Oriented Programming, co-founder of the

International Association of Software Architects in Israel.

View all posts by Hayim Makabee →

cohesion, there is an increased probability that a change in the system requirements will affect only a small

number of modules.

Extensibility: A measure of how easily the system can be extended with new functionality. As a consequence of

low coupling, it should be easier to introduce new modules, for example a new implementation for an existing

interface. As a consequence of high cohesion, it should be easier to implement new modules without being

concerned with aspects that are not directly related to their functionality.

Reusability: A measure of how easy it is to reuse a module in a different system. As a consequence of low

coupling, it should be easier to reuse a module that was implemented in the past for a previous system, because

that module should be less dependent on the rest of the system. Accordingly, it should be easier to reuse the

modules of the current system in new future systems. As a consequence of high cohesion, the functionality

provided by a module should be well-defined and complete, making it more useful as a reusable component.

As software developers, after we recognize the importance of SoC, we need to apply this principle in at least two

ways: Understanding the power of our programming language tools and patterns, and learning how to evaluate

and compare different designs in terms of coupling and cohesion.

Tools: For each mechanism in the programming languages we use, we should understand how it can be applied

to reduce coupling and increase cohesion. For example: How encapsulation, dynamic binding, polymorphism and

generic types can be used to separate concerns? Similarly, for each Design Pattern, we can analyze how it helps to

make a system more modular.

Designs: When evaluating and comparing our own design alternatives, it is always useful to think in terms of

coupling and cohesion. Sometimes a design seems to be more complex than others, but this may be a consequence

of a better separation of concerns, with fewer dependencies between modules through the definition of additional

layers. Another design may at first appear to have too many classes, but this may be an advantage if each class

becomes more cohesive.

Producing effective software designs requires lots of experience, but principles such as the Separation of Concerns

are essential to perform a great work. So reduce coupling, increase cohesion and good luck!

Share this:

This entry was posted in AOP, Design Patterns, OOD, OOP, Software Reuse and tagged AOP, Design Patterns, OOD, OOP, Software Reuse. Bookmark the permalink.

Be the first to like this.

Related

An Event-Driven Approach for the

Separation of Concerns

Do SOLID design principles make code

slow?

The SOLID Principles Illustrated by Design

Patterns

Separation of Concerns | Effective Software Design https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/

2 sur 4 31/10/2016 17:04



21 Responses to Separation of Concerns

Pingback: Four Myths of Software Evolution | Effective Software Design

Pingback: Separation of Concerns « Youry's Blog

Pingback: Layers – Separating Software Concerns | Software Patterns Demystified

Pingback: When Silos Make Sense | Form Follows Function

Pingback: Separation of concerns | Wordpress XML

Pingback: Attention Agile Programmers: Project Management is not Software Engineering | Effective Software Design

Pingback: Separation of Concerns | Richards Innovation Blog

Pingback: Patterns for the separation of concerns | Project Ramon

Pingback: Coping with Change in Agile Software Development | Effective Software Design

Pingback: The End of Agile: Death by Over-Simplification | Effective Software Design

Pingback: Why language choice doesn’t matter for your development project : EURA NOVA Blog

Pingback: When Silos Make Sense | Iasa Global

Pingback: “When Silos Make Sense” on Iasa Global Blog | Form Follows Function

Pingback: Antifragility and Component-Based Software Development | Effective Software Design

Pingback: Re-Post: The End of Agile: Death by Over-Simplification | Youry's Blog

Pingback: Quora

Putcha V. Narasimham says:

February 5, 2012 at 4:58 pm

Very good and comprehensive introduction to Effective Software Design. I too have come to know this set of concepts /

principles in different forms.

While studying General Systems Theory and Systems Thinking (particularly of Ackoff Russell), I felt that the holistic

approach is either missing or not well utilized in SSAD / OOAD. There is too much of emphasis on partitioning, division,

analysis which cannot be applied to the NEW SYSTEM to be created… there is NO READYMADE SYSTEM to be partitioned.

It has to be conceived as a whole…more as a black-box with some capabilities. One can then think of possible composition

(there can be many) of such a system…which is more of HYPOTHESIS than analysis.

I refer to Ackoff’s video in which he said this http://www.youtube.com/watch?v=IJxWoZJAD8k. See all the 3 parts. This is

very profound and it operates whether one knows it or not. I am interested in applying it to software design more rigorously.

Feel free to reach me at putchavn@yahoo.com

Best wishes,

Reply

Separation of Concerns | Effective Software Design https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/

3 sur 4 31/10/2016 17:04



Pingback: Do SOLID design principles make code slow? | Effective Software Design

Pingback: The SOLID Principles Illustrated by Design Patterns | Effective Software Design

Pingback: Unit testing part 2: Getting started with TDD | Ken Bonny's Blog

Pingback: Step into OO paradigm | ISA

Effective Software Design
Blog at WordPress.com.

Separation of Concerns | Effective Software Design https://effectivesoftwaredesign.com/2012/02/05/separation-of-concerns/

4 sur 4 31/10/2016 17:04


