
Martin Fowler
25 November 2003

AnemicDomainModel

This is one of those anti-patterns that's been around for quite a long time,
yet seems to be having a particular spurt at the moment. I was chatting
with Eric Evans on this, and we've both noticed they seem to be getting
more popular. As great boosters of a proper Domain Model, this is not a
good thing.

The basic symptom of an Anemic Domain Model is that at first blush it
looks like the real thing. There are objects, many named after the nouns
in the domain space, and these objects are connected with the rich
relationships and structure that true domain models have. The catch
comes when you look at the behavior, and you realize that there is hardly
any behavior on these objects, making them little more than bags of
getters and setters. Indeed often these models come with design rules
that say that you are not to put any domain logic in the the domain
objects. Instead there are a set of service objects which capture all the
domain logic. These services live on top of the domain model and use
the domain model for data.

The fundamental horror of this anti-pattern is that it's so contrary to the
basic idea of object-oriented design; which is to combine data and
process together. The anemic domain model is really just a procedural
style design, exactly the kind of thing that object bigots like me (and Eric)
have been fighting since our early days in Smalltalk. What's worse, many
people think that anemic objects are real objects, and thus completely
miss the point of what object-oriented design is all about.

Now object-oriented purism is all very well, but I realize that I need more
fundamental arguments against this anemia. In essence the problem with
anemic domain models is that they incur all of the costs of a domain
model, without yielding any of the benefits. The primary cost is the
awkwardness of mapping to a database, which typically results in a
whole layer of O/R mapping. This is worthwhile iff you use the powerful
OO techniques to organize complex logic. By pulling all the behavior out
into services, however, you essentially end up with Transaction Scripts,
and thus lose the advantages that the domain model can bring. As I

AnemicDomainModel http://martinfowler.com/bliki/AnemicDomainModel.html

1 sur 3 28/10/2016 14:27

discussed in P of EAA, Domain Models aren't always the best tool.

It's also worth emphasizing that putting behavior into the domain objects
should not contradict the solid approach of using layering to separate
domain logic from such things as persistence and presentation
responsibilities. The logic that should be in a domain object is domain
logic - validations, calculations, business rules - whatever you like to call
it. (There are cases when you make an argument for putting data source
or presentation logic in a domain object, but that's orthogonal to my view
of anemia.)

One source of confusion in all this is that many OO experts do
recommend putting a layer of procedural services on top of a domain
model, to form a Service Layer. But this isn't an argument to make the
domain model void of behavior, indeed service layer advocates use a
service layer in conjunction with a behaviorally rich domain model.

Eric Evans's excellent book Domain Driven Design has the following to
say about these layers.

Application Layer [his name for Service Layer]: Defines the jobs the
software is supposed to do and directs the expressive domain objects
to work out problems. The tasks this layer is responsible for are
meaningful to the business or necessary for interaction with the
application layers of other systems. This layer is kept thin. It does not
contain business rules or knowledge, but only coordinates tasks and
delegates work to collaborations of domain objects in the next layer
down. It does not have state reflecting the business situation, but it can
have state that reflects the progress of a task for the user or the
program.

Domain Layer (or Model Layer): Responsible for representing
concepts of the business, information about the business situation,
and business rules. State that reflects the business situation is
controlled and used here, even though the technical details of storing it
are delegated to the infrastructure. This layer is the heart of business
software.

The key point here is that the Service Layer is thin - all the key logic lies
in the domain layer. He reiterates this point in his service pattern:

Now, the more common mistake is to give up too easily on fitting the
behavior into an appropriate object, gradually slipping toward
procedural programming.

I don't know why this anti-pattern is so common. I suspect it's due to
many people who haven't really worked with a proper domain model,
particularly if they come from a data background. Some technologies

AnemicDomainModel http://martinfowler.com/bliki/AnemicDomainModel.html

2 sur 3 28/10/2016 14:27

Share: if you found this article useful, please share it. I
appreciate the feedback and encouragement

encourage it; such as J2EE's Entity Beans which is one of the reasons I
prefer POJO domain models.

In general, the more behavior you find in the services, the more likely you
are to be robbing yourself of the benefits of a domain model. If all your
logic is in services, you've robbed yourself blind.

Find similar
articles at these
tags

bad things

domain driven design

application architecture

© Martin Fowler | Privacy Policy | Disclosures

AnemicDomainModel http://martinfowler.com/bliki/AnemicDomainModel.html

3 sur 3 28/10/2016 14:27

